Communications to the Editor

6-DEOXYILLUDIN M, A NEW ANTITUMOR ANTIBIOTIC: FERMENTATION, ISOLATION AND STRUCTURAL IDENTIFICATION

Sir:

A new antitumor antibiotic, 6-deoxyilludin M (1) was isolated from the culture broth of the Basidiomycetes, *Pleurotus japonicus*. This compound, which is structurally related to illudin M differing in the absence of the 6-OH group, is active against experimental murine leukemia P388. In this communication, we report the fermentation, isolation and structural identification of 1 and the coproduced 6-deoxyilludin S (2).

Agar slant cultures of *P. japonicus* ATCC 20195 were used to inoculate seed flasks containing 50-ml of a medium consisting of peptone (Kyokutou) 5 g, yeast extract 5 g, glucose 10 g, vegetative juice (V-8) 50 ml, CaCO₃ 3 g and malt extract 2 g per liter of deionized water. The inoculum was cultivated at 25°C for 2 days and added at the rate of 5% to the fermentation medium consisting of sucrose 50 g, soybean meal 20 g, CaCO₃ 5 g, KH₂PO₄ 0.5 g, MgSO₄·7H₂O 0.5 g and antiform agents LG-109 (Asahi Denka Kogyo) and KM-70 (Shinetsu

Table 1. Physico-chemical properties of 1 and 2.

	1	2	
Appearance	Pale yellow amorphous solid	Pale yellow amorphous solid	
Molecular formula	$C_{15}H_{20}O_2$	$C_{15}H_{20}O_3$	
MW (EI-MS, m/z)	232.1462	248.1411	
$[\alpha]_{\rm D}^{23}$ (c 1.0, MeOH)	-11°	-13°	
UV λ_{\max}^{MeOH} (nm)	248 (sh), 320	248, 320	
IR ν_{\max}^{KBr} (cm ⁻¹)	3480, 2950, 2920,	3450, 2950, 2920,	
	2850, 1690, 1600	2850, 1690, 1600	
Rf value ^a	0.85	0.65	
Solubility			
Soluble	MeOH, EtOAc, CHCl ₃ , Me ₂ CO	MeOH, EtOAc, CHCl ₃ , Me ₂ CO	
Insoluble	Hexane, H_2O	Hexane, H_2O	

^a Silica gel TLC (Merck 5715), solvent; toluene - Me₂CO (7 : 3).

Table 2. ¹ H NMR	data of 1 and	2 (in DMSO- d_{θ}).
-----------------------------	---------------	------------------------------------

Table 3. ¹³C NMR data of 1 and 2 (in DMSO- d_{θ}).

Proton No.	1	2	Carbon No.	1	2
2-OH	4.90 s	4.86 s	C-1	199.8 s	201.8 s
$6-CH_2$	2.43 s	2.59 d (J=16.1 Hz),	C-2	75.9 s	77.7 s
		2.23 d (<i>J</i> =16.1 Hz)	C-3	31.5 s	32.5 s
8-H	6.48 s	6.48 s	C-4	136.0* s	139.1* s
10-CH ₃	1.19 s	1.20 s	C-5	126.6* s	128.4* s
$11-CH_2$	0.32 m,	0.31 m,	C-6	42.9 t	39.4 t
	0.63 m	0.64 m	C-7	44.1 s	51.6 s
$12-CH_2$	0.80 m,	0.82 m,	C-8	147.2 d	145.8 d
	0.97 m	1.03 m	C-9	135.9* s	137.5* s
13-CH₃	1.43 s	1.44 s	C-10	28.7** q	24.9** q
15-CH ₈	1.14 s	1.10 s	C-11	5.0 t	5.8 t
$14-CH_3$	1.12 s		C-12	7.6 t	8.4 t
$14-CH_2$		3.30 m	C-13	14.5 q	14.9 q
14 - 0H		4.82 t (J = 5.5 Hz)	C-14	24.5** q	69.7 t
	· · · · · · · · · · · · · · · · · · ·	·····	C-15	27.9** q	2 4.1** q

*,** Assignment may be reversed.

THE JOURNAL OF ANTIBIOTICS

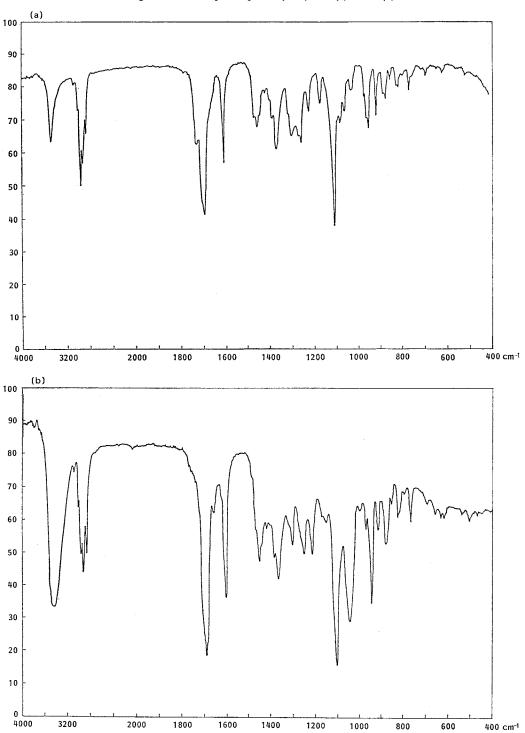
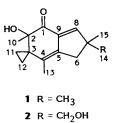


Fig. 1. IR absorption spectra (KBr) of 1 (a) and 2 (b).


Kagaku) per liter of deionized water. The pH of medium was adjusted to 7.0 prior to sterilization. The jar fermentor was stirred at 300 rpm and aerated with 1 vol/vol/minute. At harvest (200 hours) the pH was 5.8 to 5.4. Total antibacterial activity reached a maximum at 180 hours measured by the paper-disc method on nutrient agar using *Bacillus subtilis* as the test organism.

The culture liquor was filtered and the filtrate (15 liters) was applied to a column of Diaion HP-20, the column was washed with deionized water - MeOH (8 : 2) then eluted with MeOH. The active fractions were combined, and evaporated to dryness. Further purification was effected by two stages of silica gel chromatography using toluene - Me₂CO (20 : 1) and hexane - EtOAc (7 : 3) as eluents to yield 30 mg of 1 and 120 mg of 2.

Physico-chemical properties of 1 and 2 are summarized in Table 1. ¹H and ¹³C NMR data are shown in Tables 2 and 3, respectively. The molecular formula of 1 and 2 were deduced as $C_{15}H_{20}O_2$ (m/z 232.1462) and $C_{15}H_{20}O_3$ (m/z 248.1411) from electron ion mass spectrum (EI-MS). 1 and 2 have nearly identical UV spectra (MeOH), λ_{max} nm 248 (sh), 320 and λ_{max} nm 248, 320, suggesting the presence of cross-conjugated dienone. The characteristic absorptions attributed to OH and C=O were observed in IR spectra (Fig. 1). Evidence for the illudin-related structure of both compounds (Fig. 2) was obtained by spectroscopic analysis. The ¹H and ¹³C NMR spectra of 1 are quite similar to that of illudin M1~4) except that methylene resonances, δ 2.43 (¹H) and 42.9 (¹³C) are observed for 1 instead of the methine resonance (C-6) of illudin M. The ¹H and ¹³C NMR data of 2 are also quite similar to that of illudin S^{1-4} except for the appearance of methylene resonances, δ 2.23, 2.59 (¹H) and 39.4 (¹³C) instead of the methine resonance (C-6) of illudin S.

1 exhibited weak activity against *B. subtilis* (MIC; 50 μ g/ml by agar dilution methods) but did not show antimicrobial activity against the following bacteria and fungi: *Streptococcus faecalis, Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Proteus vulgaris, Shigella sonnei, Salmonella typhosa, Klebsiella pneumoniae* and *Candida albicans.* 1 was effective against murine leukemia P388, showing significant in-

Fig. 2. The structure of 6-deoxyilludin M (1) and 6-deoxyilludin S (2).

crease of life span (ILS 24%) at a daily dose of 5 mg/kg for 5 days (ip). In contrast to this, **2** and illudin S were ineffective against murine leukemia P388 although illudin S is reported to exhibit antitumor activity against murine Ehrlich ascites tumor⁵⁰. Detailed studies on the antitumor activity of **1** are in progress and will be published elsewhere.

Acknowledgments

The authors are grateful to Dr. FUSAO TOMITA for his continuing interest and to Miss MITSUE AOYAGI for technical assistance.

> Mitsunobu Hara Mayumi Yoshida Makoto Morimoto[†] Hirofumi Nakano

Tokyo Research Laboratories, Kyowa Hakko Kogyo Co., Ltd., Machida-shi, Tokyo, Japan [†]Pharmaceutical Research Laboratories, Kyowa Hakko Kogyo Co., Ltd., Nagaizumi-cho, Shizuoka, Japan

(Received May 9, 1987)

References

- MCMORRIS, T. C. & M. ANCHEL: Fungal metabolites. The structure of the novel sesquiterpenoid illudin-S and -M. J. Am. Chem. Soc. 87: 1594~1600, 1965
- MATSUMOTO, T.; H. SHIRAHAMA, A. ICHIHARA, Y. FUKUOKA, Y. TAKAHASHI, Y. MORI & M. WATA-NABE: Structure of lampterol (illudin S). Tetrahedron 21: 2671~2676, 1965
- NAKANISHI, K.; M. OHASHI, M. TADA & Y. YAMADA: Illudin S (lampterol). Tetrahedron 21: 1231~1246, 1965
- PETER, A.; W. BRADSHAW, J. R. HANSON & I. H. SADLER: Studies in terpenoid biosynthesis.

Part 26. Application of ¹H and ¹³C N.M.R. spectroscopy to the biosynthesis of the illudin sesquiterpenoids. J. Chem. Soc. Perkin Trans. I $1982: 2445 \sim 2448, 1982$ SHINOZAWA, S.; K. TSUTSUI & T. ODA: Enhancement of the antitumor effect of illudin S by including it into liposomes. Experientia 35: 1102~1103, 1979